

Altia, Inc. © 2022
111 S. Tejon St., Ste 204

Colorado Springs, CO 80903

Altia Connection for Simulink®
Stateflow® Demonstration

This document contains copyright-protected information. All rights are reserved.

This document is for the personal use of Altia software customers and may not be incorporated into
publications, databases, or software programs without the written consent of Altia. Except where
permitted herein, making copies of these pages or any portion for any purpose other than the terms
specified, requires prior written consent of Altia. Resale of the programs or files in their present
form or with alterations is expressly prohibited.

Altia® and DeepScreen® are registered trademarks of Altia, Inc. All other product names mentioned
herein are the trademarks of their respective owners.

The information contained in this document is subject to change without notice.

Altia hereby expressly disclaims any warranties, including but not limited to infringement or any
other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Altia products, services or technical information described in this document.

Altia, Inc. shall not be liable for errors contained herein or direct, indirect, special, incidental, or
consequential damages in connection with the furnishing, performance, or use of this material.

When using Altia products and services, refer to the latest product information (user’s manuals,
application notes, etc.), and ensure that usage conditions are within the recommendations specified
by Altia. Altia disclaims any and all liability for any malfunctions, failure or accident arising out of the
use of Altia products outside of such specified recommendations.

Although Altia endeavors to improve the quality and reliability of Altia products, software products
have specific characteristics and are generally not error-free. You are responsible for evaluating the
viability and utility of software products for your use.

Please contact an Altia sales office if you have any questions regarding the information contained in
this document or Altia products.

Altia, Inc. © 2022
111 S. Tejon St., Ste 204

Colorado Springs, CO 80903

Altia Connection for Simulink®
Stateflow® Demonstration

Beginning with Altia Design 13, all products are delivered through Altia Cloud software. Altia
Launcher automatically downloads and installs your licensed products in the correct versions to
support your projects.

Altia Design 13 requires that the Visual Studio 2019 Redistributable package be installed on the
host computer. The redistributable package is installed with the Altia Launcher.

Design files from Altia Design 12.x, and earlier, can be imported into Altia Design 13 projects
using the Resource Manager User Interface. This operation imports a .dsn file along with all
resources referenced by the design.

Designs imported from older versions of Altia Design may appear different in Altia Design 13.
Some fonts will appear in a different size to comply with the new Altia Design resource system.

To get started quickly with Altia Design, please visit the Altia Design videos web page:

http://support.altia.com

http://support.altia.com/

March 17, 2022 Page | iv

Stateflow® Demonstration
Altia Connection for Simulink®

Table of Contents

 Introduction .. 7

 MATLAB Installation Requirements ... 8

 Installing this Demonstration ... 9

3.1 Altia Connection for Simulink ... 9

3.2 ZIP file .. 9

 Overview of the Demonstration Model ... 10

 Files Included in the Demonstration Model .. 14

 Opening a Demonstration Model File for the First Time 15

 Running a Demonstration Model in Simulation Mode 16

 Configuring Stateflow for Use in a Simulink Model ... 19

 Getting Events from the Altia HMI Design into Stateflow 21

 Configuring Simulink Parameters for Simulation Execution with Altia 23

 Only Use Altia API Library Files from the Demonstration Folder 30

 Transitioning to a C Code Build from Simulation Mode 31

 Using Altia DeepScreen Generated Code with Simulation and C Code Build .. 34

13.1 Generate and Build DeepScreen Windows Code for the Altia HMI 34

13.2 Use the Altia API Server Code for DeepScreen Code in a Simulation or C Code Build. 35

13.3 Change the Stateflow Model to Start a DeepScreen Executable 36

13.4 Run in Simulation Mode with a DeepScreen Executable ... 37

13.5 Generate a C Code Build and Run Standalone with a DeepScreen Executable 37

 Transitioning to Embedded Coder Deployable Code ... 40

14.1 Set Configuration Parameters for Embedded Coder ... 40

14.2 Build This Subsystem ... 42

 Configuring Unicode Simulations and Code Builds .. 46

15.1 Generate and Build DeepScreen Code for Unicode ... 46

March 17, 2022 Page | v

Stateflow® Demonstration
Altia Connection for Simulink®

15.2 Configure Simulink Simulations for Unicode .. 47

15.3 Configure Simulink Coder C Code Build and Run for Unicode 47

15.4 Configure Embedded Coder Build and Run for Unicode ... 48

 Stateflow Demonstration Summary .. 49

List of Figures

Figure 1: MATLAB R2015b thru R2020a Menu Ribbon ... 8
Figure 2: MATLAB R2019b Simulink Menu Ribbon ... 8
Figure 3: AltiaStateflowDemo.slx ... 10
Figure 4: AltiaStateflowNoSimPanel.slx ... 11
Figure 5: Stateflow Chart Contents .. 12
Figure 6: Altia Block Configured for LAN ... 15
Figure 7: Altia Runtime Windows in Simulation Mode ... 17
Figure 8: MY_START_INTERFACE Line to Start the 3D Altia Design Simulation 18
Figure 9: Event Clock_Ev Properties ... 19
Figure 10: Stateflow Block Input .. 20
Figure 11: Stateflow Graphical Function hmi_check_events .. 21
Figure 12: Graphical Function hmi_check_events Processes Events from the Altia HMI 21
Figure 13: Disable Configuration Parameters > Import custom code .. 23
Figure 14: Simulation Custom C Code Source File Content ... 24
Figure 15: Simulation Custom C Code Header File Content .. 24
Figure 16: Simulation Custom C Code Initialize Function Content ... 25
Figure 17: Simulation Custom C Code Terminate Function Content .. 25
Figure 18: Simulation Additional Build Info Include Directories ... 26
Figure 19: Simulation Example Include Directories with Extra Library Paths 26
Figure 20: Simulation Additional Build Info Libraries .. 27
Figure 21: Configuration Parameters Code Gen Settings.. 28
Figure 22: Configuration Parameters Code Gen > Custom Code Settings ... 28
Figure 23: Configuration Parameters Solver Settings .. 29
Figure 24: Choose Simulink Coder from APPS Dropdown List .. 31
Figure 25: Simulink C CODE Ribbon ... 32
Figure 26: Preparing to change MY_START_INTERFACE() to Start DeepScreen 36
Figure 27: Selecting ert.tlc System target file for Embedded Coder .. 41
Figure 28: Code Generation Settings for Embedded Coder with Microsoft Visual C++ 41
Figure 29: Embedded Coder > Build This Subsystem ... 43
Figure 30: Press Build in the Build code for Subsystem:Chart dialog ... 43

March 17, 2022 Page | 6

Stateflow® Demonstration
Altia Connection for Simulink®

Figure 31: Executing the Chart_ert_main_update.bat script ... 44

March 17, 2022 Page | 7

Stateflow® Demonstration
Altia Connection for Simulink®

 Introduction
This document accompanies Altia-developed, MATLAB Simulink/Stateflow model files to
demonstrate the use of Altia with Stateflow.

NOTE: Using Altia with Stateflow is only supported for the Windows version of MATLAB.

In this document, we do not describe the detailed steps for creating models in Simulink and
Stateflow. The Simulink Help menu (? In R2019b or newer, Help in R2019a or older) has options to
open Simulink documentation and examples. If a Stateflow chart is open, the Help menu has
options to open Stateflow documentation and examples. There are also online tutorials available.
For example, at the time this document was written, the following URL refers to the MathWorks
Videos and Webinars home page:

https://www.mathworks.com/videos.html

On the above web page, do a search for Stateflow, and choose from a selection of videos.

The Altia Design product includes an editor, runtime engine, and numerous libraries of
components for quickly creating a human-machine interface (HMI). In addition to using the
supplied component libraries to create HMIs, users can make modified versions of these
components or create custom components without programming.

In this document, HMI (Human-Machine Interface) may also be referred to as GUI (Graphical User
Interface), UI (User Interface), graphical front panel, or simply an Altia design (.dsn) file.

An Altia DeepScreen® code generator is an optional Altia product that provides the ability to
generate C code to deploy an HMI on one of many different embedded devices.

NOTE: Use Stateflow in conjunction with the Altia C API to interface to Altia Runtime on Windows,
DeepScreen generated code on Windows, or DeepScreen generated code for deploying on
an embedded device.

Continue to the next chapter for instructions on installing this demonstration for use with MATLAB
Simulink/Stateflow.

https://www.mathworks.com/videos.html

March 17, 2022 Page | 8

Stateflow® Demonstration
Altia Connection for Simulink®

 MATLAB Installation Requirements
This demonstration requires the following:

• MATLAB for Windows, R2019a or newer, 64-bit. As of January 2022, Altia has tested this
demonstration with MATLAB R2019a thru R2021b.

• MATLAB must be configured to use Visual Studio 2015, 2017, or 2019 as its compiler. Newer
versions of Visual Studio may work, but they have not been tested by Altia. To configure the
compiler for MATLAB, run the mex –setup command at the MATLAB Command Window
prompt and follow the instructions.

• To demonstrate creation of an executable to run standalone on Windows, this
demonstration uses the MATLAB Simulink Coder. You must have a MATLAB Simulink
Coder license to follow along for this part of the demonstration.

• To demonstrate Stateflow generated code that will be deployed to an embedded device
with Altia DeepScreen generated code, this demonstration uses the MATLAB Embedded
Coder. You must have a MATLAB Embedded Coder license to follow along for this part of
the demonstration.

In this document, we will refer to the MATLAB user interface that has been active since at least the
R2015b release thru R2020a. For these releases, the MATLAB menu ribbon looks like this:

Figure 1: MATLAB R2015b thru R2020a Menu Ribbon

In this document, we will refer to the Simulink user interface that has been active since R2019b.
The Simulink menu ribbon looks like this:

Figure 2: MATLAB R2019b Simulink Menu Ribbon

NOTE: The appearance of dialogs and option selections in Simulink and Stateflow for R2019b and
newer is slightly different compared to R2019a and earlier, but the general functionalities of
dialogs and option selections remain the same. If you are using Simulink and Stateflow for
R2019a or earlier, you must be familiar enough with Simulink and Stateflow functionality to
realize how to translate for the differences in appearance.

March 17, 2022 Page | 9

Stateflow® Demonstration
Altia Connection for Simulink®

 Installing this Demonstration
There are two ways to install the Stateflow demo: as part of the Altia Connection for Simulink
toolbox or as a Zip file.

3.1 Altia Connection for Simulink

If you are reading this document as part of installing the Altia Connection for Simulink toolbox or if
the Altia Connection for Simulink toolbox is already installed, this demonstration was installed as
part of the Altia Connection for Simulink. The files associated with this document are here:

C:\Users\<USER_NAME>\AppData\Roaming\MathWorks\MATLAB Add-

Ons\Toolboxes\Altia Connection\demos\AltiaStateflowDemo

To easily view/browse your AppData folder, simply enter %APPDATA% in the Address bar of
Windows Explorer. Copy the AltiaStateflowDemo folder into your MATLAB work folder or a
suitable user work folder. For example, on Windows 7 or newer, the MATLAB work folder is
something like:

 C:\Users\<USER_NAME>\Documents\MATLAB

Start MATLAB and then change MATLAB’s Current Folder to the new AltiaStateflowDemo folder.

3.2 ZIP file

If you received this demonstration as a ZIP file, unzip it relative to the MATLAB work folder or a
suitable user work folder to create a new AltiaStateflowDemo sub-folder. Start MATLAB and
then change MATLAB’s Current Folder to the new AltiaStateflowDemo folder.

March 17, 2022 Page | 10

Stateflow® Demonstration
Altia Connection for Simulink®

 Overview of the Demonstration Model
This demonstration comes with two (2) simple Simulink/Stateflow models to demonstrate use of
the Altia Connection with Stateflow: AltiaStateflowDemo.slx and
AltiaStateflowNoSimPanel.slx.

• AltiaStateflowDemo.slx – If you have the Altia Connection for Simulink toolbox installed
in your MATLAB installation, you can open this model in MATLAB.

o As shown in the picture below, this Simulink model contains an Altia block
AltiaSimPanel to provide an Altia interface for exercising the Stateflow chart with
input events and data. In this example, Ignition On/Off events go into the
Stateflow chart from the Altia block and Speed in values are delivered to the
Stateflow speed_in input. The Altia block can also monitor data from the Stateflow
chart. In this example, Speed Out values go into the Altia block from the Stateflow
speed_out output.

o This Simulink model also has a Signal Generator for delivering an event at a
regular interval to the Stateflow chart. This event triggers the execution of the
Stateflow chart (this is described in more detail later in this document).

Figure 3: AltiaStateflowDemo.slx

o The Altia block is optional as is any other content in the Simulink model (such as the
Signal Generator in this example). The Altia block AltiaSimPanel and the other
Simulink components make it easier to run in simulation mode within Simulink. We
can replace the Altia block with other Simulink components (e.g., a Ramp for Ignition
On/Off and a Sine Wave for Speed In), but these components do not provide as
much flexibility for exercising the Stateflow model in simulation mode.

March 17, 2022 Page | 11

Stateflow® Demonstration
Altia Connection for Simulink®

• AltiaStateflowNoSimPanel.slx – If you do not have the Altia Connection for Simulink
package installed in your MATLAB installation, or you prefer a model that does not use an
Altia block, open this model in MATLAB.

As shown in the picture below, this model uses a Signal Generator, Ramp, and Sine
Wave to simulate input events and data into the Stateflow chart. The output of the
Stateflow chart is simply connected to a Display. The Stateflow chart is identical in both
Simulink model files.

Figure 4: AltiaStateflowNoSimPanel.slx

For these two (2) simple Simulink/Stateflow models, this demonstration shows how to generate
code for Windows and compile it using Simulink Coder. This process provides an executable
version of the Simulink/Stateflow model and Altia HMI on Windows. This executable version does
not require installation of MATLAB or Altia Design on the Windows computer.

For transitioning to an embedded target, we will not generate code for the Simulink portion of the
model. The steps of this demonstration only generate code for the Stateflow chart using Simulink
Embedded Coder. The Stateflow chart contains logic for interfacing to an entirely independent
Altia HMI (Human-Machine Interface) for which Altia DeepScreen code can be generated for an
embedded target. For this demonstration, you will generate the code and compile it to run on
Windows. The steps are similar to those for generating code to deploy on a real embedded target.

NOTE: The Altia block for Simulink is not portable to embedded systems. Altia recommends using
Stateflow® in conjunction with the Altia C API to interface to Altia DeepScreen generated
code for an embedded target.

March 17, 2022 Page | 12

Stateflow® Demonstration
Altia Connection for Simulink®

The picture below shows the contents of the Stateflow Chart block for our simple
Simulink/Stateflow model.

Figure 5: Stateflow Chart Contents

Important details:

• The chart starts in the InitializeSystem state. In this state, the connection to the Altia
HMI is already established by code in the Configuration Parameters > Simulation Target
> Insert custom C code in generated: > Initialize function. You can press Ctrl+E to
open the Configuration Parameters dialog to see this code.

• All Altia API function calls are made through macros. The macro names begin with MY_
such as MY_SEND_EVENT() and MY_FLUSH_OUTPUT(). To see some examples, open the
Chart hmi_on graphical function. The macros are defined in the header file
Include\AltiaHMIMacros.h.

• The header file Include\AltiaHMIMacros.h contains detailed documentation such as an
explanation of why macros are used showing usage examples. Open
Include\AltiaHMIMacros.h in your favorite text editor to learn much more about these
macros and how to configure them for different Altia API variations. For example, the
macros can be configured for:

o Unicode or non-Unicode Altia API functions (non-Unicode is the default)

o Altia Design/Runtime TCP/IP socket (lan) Altia API functions

March 17, 2022 Page | 13

Stateflow® Demonstration
Altia Connection for Simulink®

o DeepScreen Altia API Server TCP/IP socket (lan) Altia API functions

o DeepScreen Altia API using animation string names or name ID functions

o DeepScreen miniGL Altia API which always uses name ID functions

• All sending and receiving of Altia HMI events happen in the Chart hmi_ graphical functions.
For example, hmi_init(), hmi_check_events(), etc.

March 17, 2022 Page | 14

Stateflow® Demonstration
Altia Connection for Simulink®

 Files Included in the Demonstration Model
The following chart describes the contents of the Stateflow demo:

File Description

AltiaStateflowDemo.slx Standalone Stateflow demo project for Altia

AltiaStateflowNoSimPanel.slx Stateflow demo project using Altia blocks

altiaAPIServer.c Main control code that includes Altia API server
functionality for Altia DeepScreen

Include folder Required Altia include files such as altia.h and
AltiaHMIMacros.h

Libs folder Required library files include the API TCP/IP socket (lan)
library files (liblan.lib and liblanUnicode.lib), the
API DDE library file (libdde.lib), and Windows library
files (gdi32.lib, user32.lib, and winmm.lib)

AltiaHMI folder Altia GUI project that Stateflow interacts with

AltiaHMI_3D folder Altia GUI project that Stateflow interacts with. This is
identical to AltiaHMI with added 3D content.

AltiaSimPanel folder Altia project used to control the Stateflow simulation
when using the AltiaStateflowDemo project

AltiaHMI.exe
AltiaHMI_3D.exe
reflash folder

Pre-compiled Alita HMI designs and reflash resources

altiart64.exe Altia Runtime executable

fontModule.dll Altia Font Module required for Altia Runtime

libEGL.dll
libGLESv2.dll

OpenGL ES 2.0 emulation DLLs required for Altia
Runtime

Chart_ert_main.c Main control code that provides additional logic and data
to Stateflow when building an embedded controller

Chart_ert_main_update.bat Batch file used to update Chart_ert_main.c,
recompile, and run the Stateflow embedded controller

March 17, 2022 Page | 15

Stateflow® Demonstration
Altia Connection for Simulink®

 Opening a Demonstration Model File for the First
Time
Execute the following steps to open the AltiaStateflowDemo for the first time. This is not
required for the AltiaStateflowNoSimPanel demo.

1. Open the Simulink/Stateflow demonstration model AltiaStateflowDemo.slx in MATLAB.

2. Make the following change in MATLAB:

a. At the MATLAB Command Window prompt, execute:
altiaLibSetup

b. Choose option (2) LAN. This configures the Altia block to use the TCP/IP socket
(LAN) version of the Altia API. After this step, the Altia block in Simulink indicates it
is configured for TCP/IP socket (LAN) communications:

Figure 6: Altia Block Configured for LAN

NOTE: Configuring the Altia block to use the TCP/IP socket (LAN) version of the Altia API
is desired for simulating with Altia DeepScreen generated code later in this
demonstration. It allows communications with the Altia Runtime executable,
and it allows communications with Altia DeepScreen generated code compiled
with the DeepScreen Altia API Server TCP/IP socket (LAN) code as a standalone
executable.

c. Save the AltiaStateflowDemo.slx model file.

March 17, 2022 Page | 16

Stateflow® Demonstration
Altia Connection for Simulink®

 Running a Demonstration Model in Simulation
Mode

1. Open the Simulink/Stateflow demonstration model AltiaStateflowDemo.slx or
AltiaStateflowNoSimPanel.slx in MATLAB if it is not already opened.

If you have not performed the steps to opening a demonstration model file for the first
time for the model file, do those steps now.

IMPORTANT: MATLAB’s Current Folder must be the folder containing the demonstration
model (.slx) file. Simulink/Stateflow expects to find the required files in
MATLAB’s current folder when it runs a simulation, generates code, or builds
generated code.

IMPORTANT: For this demonstration, only use Altia API library files (e.g.,
Include\altia.h and Libs\liblan.lib) from the demonstration folder.
These files are configured to work properly with the 64-bit version of
MATLAB and Microsoft Visual C/C++ 2015 thru 2019. You may copy these
Altia API library files to your own project folder for interfacing your own
Stateflow model to Altia.

2. From the Simulink SIMULATION ribbon, choose Run.

The first run takes extra time to start because Simulink must process the Stateflow chart
and build a <model_file_name>.mexw64 for the chart. This file is actually a DLL on
Windows. MATLAB uses code generation and Visual Studio to compile and link the file.
This compile and link should be successful because the required Altia API library files are
in the Include and Libs folders with the demonstration model (.slx) file.

When the simulation begins execution, code for the Simulink Altia block starts an Altia
Runtime session with the AltiaSimPanel Altia project, and code generated for the
Stateflow chart starts a completely independent Altia Runtime session with the AltiaHMI
Altia project.

NOTE: If the AltiaSimPanel Altia project is already opened in the Altia Design editor from
double-clicking on the Altia block in Simulink, the simulation will not connect to it.
This is a side-effect of setting up the Altia block to use the TCP/IP socket (LAN)
version of the Altia API. When the Altia block is using LAN, it always starts an Altia
Runtime window for the Altia block when the simulation starts. Configuring the Altia
block to use LAN is required for simulating with Altia DeepScreen generated code
later in this demonstration.

March 17, 2022 Page | 17

Stateflow® Demonstration
Altia Connection for Simulink®

The Altia Runtime windows open as shown in the picture below. If you are simulating for the
AltiaStateflowNoSimPanel.slx model file, there is no Altia Runtime session for the
AltiaSimPanel Altia project. Only the Altia Runtime window for the AltiaHMI Altia project exists,
and it immediately displays a speedometer and Press Here for More… text. The speedometer
needle is cycling automatically because it is connected to a Simulink Sine Wave block.

Figure 7: Altia Runtime Windows in Simulation Mode

3. Click the Simulation Ignition ON/OFF toggle button in the Altia Simulation-only Panel
window.

The Altia Runtime window for AltiaHMI displays a speedometer and Press Here for
More… text.

o Changing the Simulation Speed In slider changes the position of the needle in the
speedometer.

o Clicking on the Press Here for More… text in the Altia Runtime AltiaHMI window
changes the state of the Altia HMI to show a menu with selectable items (they just
highlight).

o Clicking on the Press Here to Exit item closes the menu.

o If the Stateflow chart content is showing in Simulink, you will see the chart animate to
indicate state changes and currently active states. This Stateflow chart animation is a
powerful feature of simulation mode. It helps with debugging issues in the Stateflow
chart logic prior to generating standalone code.

March 17, 2022 Page | 18

Stateflow® Demonstration
Altia Connection for Simulink®

4. To stop the simulation, choose SIMULATION > Stop from the Simulink or Stateflow editor
window.

o The Altia Runtime AltiaHMI window closes automatically when the simulation is
stopped because the Terminate function of the model has instructions to do this (as
described in a later chapter about Simulink Configuration Parameters).

o The Altia Runtime AltiaSimPanel window must be closed manually (from the X
button in the top-right corner of the window).

5. Now have some fun! Press Ctrl+E to open the Configuration Parameters dialog and
select Simulation Target on the left side. In the Insert custom C code in generated:
section, select the Initialize function. Edit the MY_START_INTERFACE() line to open
AltiaHMI_3D/AltiaHMI_3D.altwrk like this:

Figure 8: MY_START_INTERFACE Line to Start the 3D Altia Design Simulation

6. Press the OK button in the Configuration Parameters dialog to apply the changes and it
also closes the dialog.

7. From the Simulink SIMULATION ribbon, choose Run. There will be a few seconds delay
before the simulation starts because a rebuild of the .mexw64 is required by the change to
the Stateflow chart.

8. When the simulation starts running, the Altia Runtime window shows the AltiaHMI_3D
Altia project. It has some simple 3D content added, a blue cube, red sphere, and green
pyramid. This is just to demonstrate 3D objects in the Altia HMI project.

March 17, 2022 Page | 19

Stateflow® Demonstration
Altia Connection for Simulink®

 Configuring Stateflow for Use in a Simulink Model
Stateflow has no notion of time, so we need a periodic event to trigger it for simulation mode. In
this demo, we will use a Signal Generator block in Simulink.

The Signal Generator block is connected to the Clock_Ev event in the Stateflow model.

1. To display the Event Clock_Ev properties dialog, open the Model Explorer from Simulink or
Stateflow.

2. Select the Chart in the Model Hierarchy pane.

3. Right click on the Clock_Ev event in the Contents of: pane, and choose Properties…

Figure 9: Event Clock_Ev Properties

4. Change the event properties to match the figure above. The Scope: must be Input from
Simulink arriving on Port: 2 of the Stateflow Chart block.

Port 1 of the Stateflow Chart block is associated with the event Ignition_Ev. In
Simulink, it is driven by an output from the Altia block. For both events (Clock_Ev and
Ignition_Ev), the Trigger type is Either, so a rising value from <= 0 to positive triggers
the event or a falling value from >= 0 to negative also triggers the event.

March 17, 2022 Page | 20

Stateflow® Demonstration
Altia Connection for Simulink®

A Stateflow block in Simulink only has one (1) input pin for incoming events. If there is
more than one (1) incoming event (such as in our demonstration), use a Mux block in
Simulink to collect the multiple input events into an array for the Stateflow block.

Figure 10: Stateflow Block Input

March 17, 2022 Page | 21

Stateflow® Demonstration
Altia Connection for Simulink®

 Getting Events from the Altia HMI Design into
Stateflow
For a touchscreen HMI, we want to receive events from the Altia HMI design. For this
demonstration, receiving and processing events from the HMI is implemented in the Stateflow
graphical function hmi_check_events. A graphical function is added to a Stateflow chart with the
fx tool.

Figure 11: Stateflow Graphical Function hmi_check_events

Open the hmi_check_events graphical function to see the implementation details.

Figure 12: Graphical Function hmi_check_events Processes Events from the Altia HMI

This graphical function uses Include\AltiaHMIMacros.h macros to check for pending events
with macro MY_PENDING(). It gets the next available event with MY_NEXT_EVENT(). It compares

March 17, 2022 Page | 22

Stateflow® Demonstration
Altia Connection for Simulink®

the next event with expected events hmi_ev_on and hmi_ev_off using
MY_COMPARE_NEXT_EVENT(). Open Include\AltiaHMIMacros.h in your favorite text editor for
macro descriptions and usage examples.

NOTE: For an Altia HMI design with many events, the above logic could get very complicated. It
may be more elegant to use a different approach. Please consult with Stateflow experts
from MathWorks for the best approach.

March 17, 2022 Page | 23

Stateflow® Demonstration
Altia Connection for Simulink®

 Configuring Simulink Parameters for Simulation
Execution with Altia
For our Stateflow chart to execute in Simulation mode, Stateflow must:

• Resolve the MY_ macro usages.

• Have definitions for variables altia_id, event_value, and event_name.

• Link with the Altia API object libraries and extra Visual Studio system libraries.

To accomplish these items, there are required settings in the Configuration Parameters >
Simulation Target fields. Later, we will see that these same settings also apply for using Simulink
Coder to create an executable to run standalone on Windows.

1. Open the Configuration Parameters dialog from a Simulink or Stateflow editor window
with Ctrl+E.

2. Select Simulation Target from the left-side pane.

3. Review and apply the following settings as appropriate:

IMPORTANT: For the macros from AltiaHMIMacros.h to work successfully, the following
checkbox near the top-right of the dialog must be disabled.

o For R2018a and newer: Import custom code must be disabled as shown in this
picture:

Figure 13: Disable Configuration Parameters > Import custom code

o For R2017b, maybe R2017a, and R2016a/b: Parse custom code symbols must be
disabled.

If one of these options is enabled, the parser for Simulink/Stateflow coder will NOT
permit a name like hmi_power in MY_SEND_EVENT(hmi_power, 1) because
hmi_power does not have a definition. The parser is not able to apply the macro
definitions from AltiaHMIMacros.h during its parse, causing errors like the
following during a build:

Unresolved data ' hmi_power' in '{Something);}'.

o Required custom settings for Simulation Target > Insert custom C code in
generated: > Source file:

AltiaIdType altia_id=-1;

March 17, 2022 Page | 24

Stateflow® Demonstration
Altia Connection for Simulink®

AltiaEventType event_value;

AntiaNextAnimType event_name;

Figure 14: Simulation Custom C Code Source File Content

These are variables referenced in AltiaHMIMacros.h and also in the Stateflow model
states and graphical functions. The content in the Source file section becomes C code
in one of the Simulink/Stateflow generated C files.

o Required custom settings for Simulation Target > Insert custom C code in
generated: > Header file:

/* Read AltiaHMIMacros.h file for help using "MY_" macros */

#include "AltiaHMIMacros.h"

extern AltiaIDType altia_id;

extern AltiaEventType event_value;

extern AltiaNextAnimType event_name;

Figure 15: Simulation Custom C Code Header File Content

This is where we include AltiaHMIMacros.h and provide extern declarations for the
variables defined in the Source file section. The content in the Header file section is
included as a header file in each Simulink/Stateflow generated C file, which allows us
to use the macros and variables in the Stateflow model without compiler warnings or
errors.

March 17, 2022 Page | 25

Stateflow® Demonstration
Altia Connection for Simulink®

o Required custom settings for the Simulation Target > Insert custom C code in
generated: > Initialize function section (using AltiaHMI_3D project in this
example):

/* Configure/start Altia here */

MY_SUPPRESS_ERRORS(1);

altia_id = MY_START_INTERFACE(AltiaHMI_3D/AltiaHMI_3D.altwrk, NULL,

0, 0, NULL);

MY_RETRY_COUNT(0);

MY_CACHE_OUTPUT(1);

Figure 16: Simulation Custom C Code Initialize Function Content

o Required custom settings for Simulation Target > Insert custom C code in
generated: > Terminate function:

MY_STOP_INTERFACE();

Figure 17: Simulation Custom C Code Terminate Function Content

MY_STOP_INTERFACE() is a macro call to stop the Altia HMI. This call closes the Altia
HMI window when a simulation is stopped. This macro call is recommended for
typical models, but not absolutely required.

o Required custom settings for Simulation Target > Additional build information: >
Include directories:

.\Include

.\Libs

March 17, 2022 Page | 26

Stateflow® Demonstration
Altia Connection for Simulink®

Figure 18: Simulation Additional Build Info Include Directories

In the above picture, the settings instruct a Simulink/Stateflow build to search the
.\Include and .\Libs folders in the MATLAB current folder for header files, such as
AltiaHMIMacros.h and altia.h, and for library files, such as liblan.lib and
user32.lib.

NOTE: The Include directories list is also a list of directory paths to object libraries that are
referenced in the Libraries section. For this demonstration, all object libraries in the
Libraries section are in the demonstration .\Libs folder. Other directory paths can
be added. For example, if Windows 10 SDK 10.0.18362.0 and Visual Studio 2019 are
installed and you would like a build to search for Windows specific object libraries in
the Windows 10 SDK 64-bit folder and Visual Studio 2019 libs 64-bit folder, the
Include directories list could look like the next picture. Please note the required
double-quotes (") around the extra directories because they have spaces in folder
names.

Figure 19: Simulation Example Include Directories with Extra Library Paths

o There are no required custom settings for the Simulation Target > Additional build
information: > Source files section.

o Required custom settings for Simulation Target > Additional build information: >
Libraries:

liblan.lib

user32.lib

March 17, 2022 Page | 27

Stateflow® Demonstration
Altia Connection for Simulink®

Figure 20: Simulation Additional Build Info Libraries

The liblan.lib file is the TCP/IP socket (lan) version of the Altia API library. It
provides the Windows pre-compiled C code for Altia API functions used by the macros
in AltiaHMIMacros.h. The AltiaHMIMacros.h file includes altia.h, which is the C
header file for liblan.lib.

IMPORTANT: For this demonstration, only use Altia API library files from the
demonstration .\Include and .\Libs folders. See the next chapter for
complete details.

In the Libraries section, user32.lib is a Microsoft Visual Studio system library
compatible with Visual Studio 2015 thru 2019. To make the demonstration more
portable, there are copies of these libraries in the .\Libs folder of the
demonstration. As a result, only the library names are required, not the full Visual
Studio installation path for the libraries.

4. While the Configuration Parameters dialog is still open, select Code Generation from the
left-side pane.

5. Verify the proper Target Selection, Build process, and Code Generation objectives. The
settings in the figure below are for MATLAB R2020a using Visual Studio 2019. Your dialog
may look slightly different for a different version of MATLAB and/or a different version of
Visual Studio.

March 17, 2022 Page | 28

Stateflow® Demonstration
Altia Connection for Simulink®

Figure 21: Configuration Parameters Code Gen Settings

6. Choose Code Generation > Custom Code from the left-side pane.

7. Confirm the option Use the same custom code settings as Simulation Target is set.

Figure 22: Configuration Parameters Code Gen > Custom Code Settings

8. While the Configuration Parameters dialog is still open, select Solver from the left-side
pane.

9. Verify the following settings on the Solver screen:

o Start time: is 0.0

o Stop time: is inf

o Solver selection Type: is Fixed-step

o Solver section Solver: is discrete (no continuous states)

March 17, 2022 Page | 29

Stateflow® Demonstration
Altia Connection for Simulink®

Figure 23: Configuration Parameters Solver Settings

March 17, 2022 Page | 30

Stateflow® Demonstration
Altia Connection for Simulink®

 Only Use Altia API Library Files from the
Demonstration Folder
IMPORTANT: For this demonstration, only use Altia API library files from the demonstration

.\Include and .\Libs folders.

These demonstration folders contain integer Altia API files (such as altia.h and liblan.lib)
configured to work properly with 64-bit versions of MATLAB and Microsoft Visual Studio C/C++
2010 through 2019. You may copy these integer Altia API library files to your own project folder for
interfacing your own Stateflow model to Altia.

If the Simulink model contains an Altia block (as it does in this demonstration), the .\Include and
.\Libs folders must refer to locations containing an integer version of the Altia API header file
altia.h and Altia API library liblan.lib (as is the case for this demonstration). Assuming you
want to use Simulink Coder (i.e., Code Generation) to generate C source code from the model, the
Stateflow generated code must be compatible with the Simulink generated code. The generated
code for the Altia block only supports compiling and linking with the integer version of the Altia
API. This requires that the Stateflow chart use the integer version of the Altia API header file and
library. If there is no Altia block in the Simulink model, this is not a restriction.

The Stateflow chart can use a float version of the Altia API header file and library if there is no Altia
block in the Simulink model, but float versions are not provided with this demonstration. Float
versions are available from the bin\libfloat\ms64 (64-bit) folder of the Altia Connection for
Simulink installation. To view this installation folder, start by entering %APPDATA% in the Address
bar of Windows Explorer and then browse to MathWorks\MATLAB Add-Ons\Toolboxes\Altia
Connection\bin\libfloat\ms64.

March 17, 2022 Page | 31

Stateflow® Demonstration
Altia Connection for Simulink®

 Transitioning to a C Code Build from Simulation
Mode
It is typical to migrate from simulation mode to a Windows desktop executable. This is
accomplished by doing a C Code Build using Simulink Coder.

The benefit of this C Code Build is that it is much like running in simulation mode (it opens the Altia
simulation panel window as well as the Altia HMI window), and it is portable for running on a
different Windows computer that does not have MATLAB Simulink/Stateflow installed. Even if a
computer has MATLAB Simulink/Stateflow installed, there is no need to start it.

NOTE: For Simulink code compilation, the Windows computer primary drive (usually the C: drive)
must be configured to support short file names (also referred to as 8.3 file names). If it is
not, there will be a compile error similar to:
NMAKE : fatal error U1073: don’t know how to make 'Add-Ons\Toolboxes\Altia'
This error is caused by spaces in the folder path %APPDATA%\MathWorks\MATLAB Add-
Ons\Toolboxes\Altia Connection. The MathWorks Help Center article
https://www.mathworks.com/help/rtw/ug/enable-build-process-for-folder-names-with-
spaces.html describes how to enable short file names. Especially the section
Troubleshooting Errors When Folder Names Have Spaces is important. The MATLAB Add-
Ons folder and its contents must be recreated after enabling short file names. An easy way
to do this is to make a copy of the MATLAB Add-Ons folder (Ctrl+C, then Ctrl+V), delete
the original folder, rename the copy to MATLAB Add-Ons.

To generate a C Code Build:

1. In a Simulink or Stateflow window, choose the APPS ribbon.

2. From the APPS dropdown list, choose the Simulink Coder option.

Figure 24: Choose Simulink Coder from APPS Dropdown List

https://www.mathworks.com/help/rtw/ug/enable-build-process-for-folder-names-with-spaces.html
https://www.mathworks.com/help/rtw/ug/enable-build-process-for-folder-names-with-spaces.html

March 17, 2022 Page | 32

Stateflow® Demonstration
Altia Connection for Simulink®

3. Select the new Simulink C CODE ribbon if it is not already selected:

Figure 25: Simulink C CODE Ribbon

4. Choose Build > Build to generate code and build an executable.

NOTE: If switching between building the AltiaStateflow and AltiaStateflowNoSimPanel
projects, delete the slprj folder before building.

5. During this step, Simulink opens an Altia Runtime window for each Altia block in the model.
For example, a Main Altia View window opens for the AltiaSimPanel block in
AltiaStateflowDemo.slx. Close the window from the close icon X in the top-right corner
of the window.

6. If the code generation or build fails, Simulink is good at displaying diagnostic information.
Failures show in a Diagnostic Viewer window. Resolve them and try again.

After the code generates and compiles successfully, a new executable file
<Model_Name>.exe resides in the current project folder (for our demonstration, the file
is AltiaStateflowDemo.exe or AltiaStateflowNoSimPanel.exe). The project folder
is the folder containing the Simulink model file and Altia HMI files.

7. This executable runs standalone from Simulink. Open a Windows Explorer window, browse
to the project folder, and double-click on the executable (e.g., AltiaStateflowDemo.exe).

The executable opens a Windows Command Prompt window because it is compiled as a
console application. Very soon after the Command Prompt window opens, the Altia
Runtime windows open. If executing AltiaStateflowDemo.exe, there is an Altia
Runtime Main Altia View window for the AltiaSimPanel Altia project and another for
the AltiaHMI (or AltiaHMI_3D) Altia project. You can interact with these windows the
same way you interact with them in Simulation mode.

NOTE: Closing one or both Altia Runtime windows does not stop the executable. It
continues to run until the Command Prompt window is closed by clicking on the X
button in its top-right corner. Similarly, closing the Command Prompt window does
not close any Altia Runtime windows. You must manually close an Altia Runtime
window by clicking on the X button in its top-right corner.

March 17, 2022 Page | 33

Stateflow® Demonstration
Altia Connection for Simulink®

You can copy the standalone files to a different folder on the current Windows computer
or a folder on a different Windows computer and run the simulation standalone. For a C
Code Build of AltiaStateflowDemo.slx, the standalone files are:

AltiaStateflowDemo.exe

AltiaHMI or AltiaHMI_3D directory

AltiaSimPanel directory

altiart64.exe

fontModule.dll

libEGL.dll

libGLESv2.dll

March 17, 2022 Page | 34

Stateflow® Demonstration
Altia Connection for Simulink®

 Using Altia DeepScreen Generated Code with
Simulation and C Code Build
For developing an Altia HMI to run on an embedded device, it is typical to run the Altia HMI as a
DeepScreen generated code executable on Windows instead of Altia Runtime. This allows for
verification of the Altia HMI DeepScreen generated code with the Stateflow model on Windows.
Issues can be much easier to debug and resolve on Windows prior to generating code, compiling,
downloading, and running on an embedded target.

NOTE: Altia DeepScreen code generation for Windows requires a license for Altia Design 13.2 or
newer and a license for the DeepScreen Windows Intel x86 Port for OpenGL ES 2.0 Target.
If you do not have the required licenses, you can still follow along using the pre-compiled
DeepScreen executables provided with this demonstration. Skip the DeepScreen code
generation and build steps of this chapter and go immediately to the section for changing
the Stateflow model to start a DeepScreen executable.

13.1 Generate and Build DeepScreen Windows Code for the
Altia HMI

1. Open the AltiaHMI or AltiaHMI_3D project in Altia Design from Windows Explorer by
double-clicking on the .altwrk file in the respective project folder. If the project does not
open, read the following NOTE for help.

NOTE: The AltiaHMI.altwrk and AltiaHMI_3D.altwrk projects were originally saved in
a project version that might be different from the project version(s) you are licensed
to use. For example, the .altwrk might be a Windows 13.3 project, but you might
only have a license for Windows 13.2. If this happens, a project is created in the
Altia Launcher, but you cannot open it. Here is an example picture of an AltiaHMI
project for Windows 13.3 in the Altia Launcher.

To change this AltiaHMI project to a project version that you are licensed to use,
click on the 3 ellipses menu at the far right , choose the Reassign Template…
option, select an available Windows project template from the list, and press the
Assign button. The list only shows project templates you are licensed to use. Now
you can double-click on the AltiaHMI project in the Altia Launcher Projects pane or
double-click on the AltiaHMI.altwrk file from Windows Explorer to open the
project in Altia Design. You must choose a Windows 13.X or Windows Cloud 13.X

March 17, 2022 Page | 35

Stateflow® Demonstration
Altia Connection for Simulink®

project template for this demonstration. A Windows MiniGL 13.X, Windows MinGL
Cloud 13.X, or an embedded target template is not supported for this
demonstration.

2. From the Altia Design Code Generation ribbon, choose Build Prototype. Several windows
pop up and then close to generate and build the Windows executable.

o For AltiaHMI, the executable is AltiaHMI.exe in the AltiaHMI\out folder.

o For AltiaHMI_3D, the executable is AltiaHMI_3D.exe in the AltiaHMI_3D\out
folder.

3. As a sanity check, double-click on the new executable AltiaHMI.exe or AltiaHMI_3D.exe
from a Windows Explorer window.

The executable starts and opens a window for the Altia HMI to show in its initial state. If
you click in the window, there is no response because the Simulink/Stateflow logic code is
not running.

4. Click on the X button in the window’s top-right corner. This closes the window and stops
the executable.

13.2 Use the Altia API Server Code for DeepScreen Code in a
Simulation or C Code Build

The Altia HMI projects take advantage of the ability to include a custom main() function when
building a DeepScreen executable. This is done by including a C source code file by the same name
as the Alita project in the <ALTIA_project>\code folder. For example, for the AltiaHMI project,
the source code file is AltiaHMI\code\AltiaHMI.c.

For the Stateflow demo, the AltiaHMI.c and AltiaHMI_3D.c files are copies of the Altia API
Server code. This is Altia application C code that opens a TCP/IP socket (lan) as a server. It can
send/receive messages with other programs that are linked with a TCP/IP socket (lan) version of
the Altia API, such as liblan.lib in the demonstration folder. The other programs can be
Simulink/Stateflow in simulation mode or a Simulink Coder C Code Build standalone executable.
The other programs send/receive events to/from the DeepScreen executable in the same way they
send/receive events with Altia Runtime.

For interfacing the DeepScreen generated Windows code to Simulink/Stateflow simulations and
Simulink Coder C Code Build standalone executables, it is best practice to compile and link the
DeepScreen generated Windows code with the Altia API Server code, so it runs on its own. If there
is an Altia block in the Simulink model, the Altia block is not able to open its associated Altia
Runtime window for a Simulink Coder C Code Build executable if the DeepScreen generated

March 17, 2022 Page | 36

Stateflow® Demonstration
Altia Connection for Simulink®

Windows code is linked directly into the executable. In our demonstration, the Altia block opens
the Altia Simulation-only Panel window for the AltiaSimPanel Altia project.

To interface DeepScreen generated Windows code to Simulink/Stateflow simulations and/or
Simulink Coder C Code Builds, copy the C file altiaAPIServer.c to the <ALTIA_project>\code
folder, rename it to match the same name of the Altia HMI project, and then, rebuild the Altia
project.

13.3 Change the Stateflow Model to Start a DeepScreen
Executable

After completing the steps in Section 13.3, the <Altia_project>\out folder now has a new
AltiaHMI.exe or AltiaHMI_3D.exe executable file and an <Altia_project>\out\reflash
folder. If you do not have Altia Design 13.2 or newer or a DeepScreen Intel x86 OpenGL ES 2.0
Windows code generator, you can continue by using the pre-built versions of AltiaHMI.exe,
AltiaHMI_3D.exe, and the reflash folder, that already exist in the Stateflow demo folder.

1. Copy the DeepScreen executable and the reflash folder from <Altia_project>\out to the
Simulink project folder. For example, for the AltiaHMI project, copy
AltiaHMI\out\AltiaHMI.exe to AltiaHMI.exe and AltiaHMI\code\reflash to
reflash in the Stateflow demo folder.

2. Open the Simulink/Stateflow demonstration model (.slx) file in MATLAB if it is not already
open.

3. Press Ctrl+E to open the Configuration Parameters dialog and select Simulation Target
on the left side. In the Insert custom C code in generated: section, select the Initialize
function. The connection to the Altia HMI is established by the MY_START_INTERFACE()
call as shown in the picture below.

Figure 26: Preparing to change MY_START_INTERFACE() to Start DeepScreen

a. The AltiaHMIMacros.h file defines the MY_START_INTERFACE() macro to the Altia
API library function AtStartInterface().

March 17, 2022 Page | 37

Stateflow® Demonstration
Altia Connection for Simulink®

b. The MY_START_INTERFACE() in the picture starts the Altia Runtime executable
altiart64.exe and passes it the AltiaHMI_3D/AltiaHMI_3D.altwrk filename as
an argument. Note the use of forward slash (/). It is safer in C code than PC slash (\).

c. The executable altiart64.exe opens AltiaHMI_3D/AltiaHMI_3D.altwrk and
displays it in a window.

4. To start a DeepScreen executable, change the parameters for MY_START_INTERFACE().

o For starting AltiaHMI.exe, change the MY_START_INTERFACE() line to the
following (changes are highlighted in yellow):

 altia_id = MY_START_INTERFACE(AltiaHMI.exe, NULL, 3, 0, NULL);

o For starting AltiaHMI_3D.exe, change the line to the following:

 altia_id = MY_START_INTERFACE(AltiaHMI_3D.exe, NULL, 3, 0, NULL);

NOTE: In the above changes for MY_START_INTERFACE(), no double-quotes around the
executable name is correct. Never double-quote this parameter. The
MY_START_INTERFACE() macro definition takes care of this for us.

13.4 Run in Simulation Mode with a DeepScreen Executable

Now you are ready to run in Simulink/Stateflow Simulation mode. See the earlier chapter Running
a Demonstration Model in Simulation Mode for details.

The only change you will notice is the title of the Altia HMI window. When Altia Runtime was
opening the AltiaHMI or AltiaHMI_3D Altia project, the window title was Main Altia View. When
running the DeepScreen executable AltiaHMI.exe or AltiaHMI_3D.exe, the window title is
AltiaHMI or AltiaHMI_3D. The look, feel, and behavior are identical because the DeepScreen
generated code duplicates the look, feel, and behavior of Altia Runtime.

13.5 Generate a C Code Build and Run Standalone with a
DeepScreen Executable

The demonstration model is ready for a C Code Build using Simulink Coder. The steps for
generating a C Code Build are like those in the earlier chapter Transitioning to a C Code Build from
Simulation Mode. Below are the steps, but without pictures:

1. In a Simulink or Stateflow window, choose the APPS ribbon.

2. From the APPS dropdown list, choose the Simulink Coder option.

3. Select the new Simulink C CODE ribbon if it is not already selected.

March 17, 2022 Page | 38

Stateflow® Demonstration
Altia Connection for Simulink®

4. Choose Build > Build to generate code and build an executable.

5. During this step, Simulink opens an Altia Runtime window for each Altia block in the
Simulink model if any exist. Close the window from the X button in the top-right corner of
the window.

6. If the code generation or build fails, Simulink is good at displaying diagnostic information.
Failures show in a Diagnostic Viewer window. Resolve them and try again.

After the code generates and compiles successfully, a new executable file
<Model_Name>.exe resides in the current project folder (for our demonstration, the file
is AltiaStateflowDemo.exe or AltiaStateflowNoSimPanel.exe). The project folder
is the folder containing the Simulink model file and Altia HMI projects.

7. This executable file runs standalone from Simulink. Open a Windows Explorer window,
browse to the project folder, and double-click on the executable (e.g.,
AltiaStateflowDemo.exe).

The executable opens a Windows Command Prompt window because it is compiled as a
console application. Very soon after the Command Prompt window opens, the Altia
windows open. If executing AltiaStateflowDemo.exe, this is the Altia Runtime window
Main Altia View for the AltiaSimPanel Altia project and the DeepScreen window
AltiaHMI or AltiaHMI_3D for the DeepScreen executable AltiaHMI.exe or
AltiaHMI_3D.exe. You can interact with these windows the same way you interact with
them in Simulation mode.

NOTE: Closing the Main Altia View window or the AltiaHMI_3D window does not stop the
executable. It continues to run until the Command Prompt window is closed by
clicking on the X button in its top-right corner. Similarly, closing the Command
Prompt window does not close any Altia windows. You must manually close an Altia
window by clicking on the X button in its top-right corner.

You can copy the standalone files to a different folder on the current Windows computer
or a folder on a different Windows computer and run the simulation standalone.

For a C Code Build of AltiaStateflowDemo.slx or AltiaStateflowNoSimPanel.slx,
the required standalone files are listed below.

AltiaStateflowdemo.exe or
AltiaStateflowNoSimPanel.exe

Simulink Coder C Code Build executable. Start
this executable to run standalone.

AltiaHMI.exe or
AltiaHMI_3D.exe
libEGL.dll

DeepScreen executable using the Altia API
Server code to serve a TCP/IP socket (lan). The
DeepScreen executable also requires these two

March 17, 2022 Page | 39

Stateflow® Demonstration
Altia Connection for Simulink®

libGLESv2.dll
reflash folder

(2) DLL files for OpenGL ES 2.0 emulation on
Windows and the reflash folder.

altiart64.exe
fontModule.dll

Altia Runtime executable and support files.
AltiaStateflowDemo.exe
Requires these files to open Altia Runtime
window for AltiaSimPanel Altia block.
AltiaStateflowNoSimPanel.exe
Does not require these files because it does
not have an AltiaSimPanel Altia block.

AltiaSimPanel folder AltiaStateflowDemo.exe
Requires these files to open Altia Runtime
window for AltiaSimPanel Altia block.
AltiaStateflowNoSimPanel.exe
Does not require these files because it does
not have an AltiaSimPanel Altia block.

March 17, 2022 Page | 40

Stateflow® Demonstration
Altia Connection for Simulink®

 Transitioning to Embedded Coder Deployable
Code
The main purpose of this demonstration is to show the use of Altia with Stateflow.

The Simulink blocks in our demonstration models (for example, Altia block and Signal Generator
block) only exist to make it easier to interact with the Stateflow Chart in Simulation mode and a
Simulink Coder C Code Build executable for Windows.

To transition to deployable code for an embedded system, we will only generate code for the
Stateflow subsystem and then write C code to send/receive data or events to/from the Stateflow
generated code. In a real embedded system, the C code could monitor external devices for data
and send that data to the Stateflow generated code. It could also monitor Stateflow outputs and
send data to external devices.

Simulink’s Embedded Coder produces the most efficient code for deploying to an embedded
system. One of the Embedded Coder toolchains is Microsoft Visual C++, so we can generate and
build an executable for Windows for demonstration purposes.

Until now, we compiled the Altia HMI DeepScreen generated code with the Altia API Server code
into its own standalone executable. This approach allowed us to easily interface with Altia HMI
DeepScreen generated code in Simulation mode, as well as build and run a Simulink Coder C Code
Build executable. We did both without changing any build configuration parameters.

Now we want to create a Windows executable that closely matches an embedded system build.
This chapter shows how to do Embedded Coder code generation and compile and link it directly
with Altia HMI DeepScreen generated code.

NOTE: To complete the steps in this chapter, you must have a Simulink Embedded Coder license
and a license for Altia Design 13.2 or newer and DeepScreen Intel x86 OpenGL ES 2.0
Windows code generator.

14.1 Set Configuration Parameters for Embedded Coder

1. Open the Simulink/Stateflow demonstration model (.slx) file in MATLAB if it is not already
opened.

2. Open the Configuration Parameters dialog from a Simulink or Stateflow editor window
with Ctrl+E.

3. In the left-side pane of the Configuration Parameters dialog, select Code Generation.

4. In the Target selection > System target file: field, press the Browse… button.

March 17, 2022 Page | 41

Stateflow® Demonstration
Altia Connection for Simulink®

5. In the new System Target File Browser window, highlight the System Target File option
ert.tlc that has the description of Embedded Coder, and click the OK button.

Figure 27: Selecting ert.tlc System target file for Embedded Coder

Now the Code Generation fields of the Configuration Parameters dialog should look
very similar to the picture below. The version of the Microsoft Visual C++ in the Toolchain
settings may be different if your MATLAB is configured for a different version of Visual
Studio.

Figure 28: Code Generation Settings for Embedded Coder with Microsoft Visual C++

6. Expand Code Generation in the left-side pane and select Custom Code.

7. Disable the Use the same custom code settings as Simulation Target option.

8. Use the filenames below to replace all current filenames in the Additional build
information: > Libraries section.

altiaWinLib.lib

altiaAPIlib.lib

libEGL.lib

libGLESv2.lib

libpng64.lib

zlib64.lib

user32.lib

gdi32.lib

winmm.lib

March 17, 2022 Page | 42

Stateflow® Demonstration
Altia Connection for Simulink®

a. Highlight and copy (Ctrl+C) the filenames above into the Windows clipboard.

b. Then, highlight the current filenames in the Additional build information: >
Libraries section, and paste (Ctrl+V) to replace the current filenames with the
filenames in the Windows clipboard.

NOTE: The altiaWinLib.lib, altiaAPIlib.lib, libpng64.lib, zlib64.lib,
libEGL.lib, and libGLESv2.lib files are created from generating DeepScreen
code and compiling it. If you have not already generated and compiled DeepScreen
code, see the instructions for doing so in an earlier chapter of this document.

NOTE: The user32.lib, gdi32.lib, and winmm.lib libraries are Microsoft Visual Studio
system libraries compatible with Visual Studio 2015 thru 2019. For convenience,
these files are included with the demonstration in the Libs folder. As a result, only
the library names, not the full Visual Studio installation path for the libraries, are
required.

9. Add the following directories to the Include directories in the Additional build
information: > Include directories section. If DeepScreen code was generated for
AltiaHMI_3D, use AltiaHMI_3D in the directory paths.

.\AltiaHMI\out\libs

.\AltiaHMI\out\libs\api\int

10. Add the following define in the Additional build information: > Defines section.

DEEPSCREEN

11. After making the above changes to the Code Generation > Custom Code settings in the
Configuration Parameters dialog, press Apply to only apply the changes and leave the
dialog open, or press OK to apply the changes and close the dialog.

14.2 Build This Subsystem

1. Return to the Simulink editor window. Change to the top-level of the model to show the
Stateflow chart and the other Simulink components.

2. Right-click on the Stateflow Chart block, and choose the option C/C++ Code > Build this
Subsystem from the menu.

March 17, 2022 Page | 43

Stateflow® Demonstration
Altia Connection for Simulink®

Figure 29: Embedded Coder > Build This Subsystem

3. When the Build code for Subsystem:Chart dialog appears, press the Build button.

Figure 30: Press Build in the Build code for Subsystem:Chart dialog

The Build code for Subsystem:Chart dialog closes when the code generation and build
complete. The Simulink editor window shows a new pane for the generated Chart.c
source code.

4. You can study the source code or just close the pane from the X button in the top-right
corner of the pane.

5. Open a Windows Explorer window and browse to the demonstration folder.

6. Notice the new sub-folder named Chart_ert_rtw. This is the folder where Embedded
Coder put the generated C source code for the Stateflow Chart block.

March 17, 2022 Page | 44

Stateflow® Demonstration
Altia Connection for Simulink®

7. Scroll down in the Windows Explorer window to find Chart.exe. Embedded Coder
compiled the C source code in Chart_ert_rtw to create the Chart.exe executable.

8. Double-click on Chart.exe to run it.

9. It runs, but it only opens a Command Prompt window. Close the Command Prompt window
from the X button in the top-right corner.

To make Chart.exe more interesting, we must modify its main function to provide
additional logic to step the Stateflow chart code while inputting some interesting data
values. The file Chart_ert_main.c is provided with the demonstration to replace the
generated Chart_ert_rtw\ert_main.c file.

10. Double-click on the script Chart_ert_main_update.bat to copy Chart_ert_main.c to
Chart_ert_rtw\ert_main.c, and then rebuild Chart.exe.

The script displays a Command Prompt window that shows messages for each step it
performs. It waits for you to Press any key to continue … before it performs the next
step. If you want to see how Chart_ert_main_update.bat works, open it in a simple
text editor such as Notepad.

When the script runs, it displays the text below before it is ready to rebuild Chart.exe.

Figure 31: Executing the Chart_ert_main_update.bat script

11. Please read the messages before pressing any key to continue.

March 17, 2022 Page | 45

Stateflow® Demonstration
Altia Connection for Simulink®

Depending on the version of MATLAB, the new Command Prompt window that opens to
perform the Chart.exe build either stays open after the build finishes or immediately
closes after the build finishes.

12. After the Chart_ert_main.bat script executes Chart_ert_rtw\Chart.bat to rebuild
Chart.exe, the script is ready to run the new version of Chart.exe. You can also just
double-click on Chart.exe from any Windows Explorer window to run it.

When Chart.exe runs, it now shows the Altia HMI DeepScreen window with the
speedometer needle continuously cycling through its range. This new behavior is a result
of the new version of the Chart_ert_rtw\ert_main.c C code file.

13. From a Windows Explorer window, open the Chart_ert_rtw folder, and notice these two
files:

ert_main.c

ert_main.c.bak

The ert_main.c is our new version and ert_main.c.bak is the original version generated
by Embedded Coder.

14. Compare the two files with your favorite file comparing utility (such as WinMerge). You can
see the simple changes made to ert_main.c to input data into the Stateflow chart
generated code.

MathWorks has support pages and videos that show other ways to interface custom C
code to Embedded Coder generated C code.

The Chart.exe executable contains both the Embedded Coder generated code and the
Altia HMI DeepScreen generated code. The Chart.exe and several required DLL files are
easily copied to a different folder on the current Windows computer or a folder on a
different Windows computer to run standalone.

The files required to run Chart.exe standalone are shown below:

Chart.exe Single executable containing both the Embedded Coder
generated Stateflow chart C code and the Altia HMI DeepScreen
generated C code.

libEGL.dll
libGLESv2.dll

The DeepScreen generated C code requires these two (2) DLL
files for OpenGL ES 2.0 emulation on Windows.

reflash folder The DeepScreen code requires the resources in this folder.

March 17, 2022 Page | 46

Stateflow® Demonstration
Altia Connection for Simulink®

 Configuring Unicode Simulations and Code Builds
Altia users often use international text in HMIs. Our demonstration Altia HMI has no international
text. If it did, it would need to display wide character strings to support non-Latin international
text, such as Arabic, Chinese, Japanese, Korean, etc. The wide character values must follow the
Unicode standard. We refer to the combination of using wide character strings containing Unicode
character values as just Unicode for short.

To support non-Latin international text, we must configure these elements for Unicode:

• DeepScreen code generation

• Simulink Simulation mode

• Simulink Coder

• Embedded Coder

This chapter describes how to configure each of these elements for Unicode.

15.1 Generate and Build DeepScreen Code for Unicode

1. An earlier section in this document describes the steps to Generate and Build DeepScreen
Windows Code. Complete these steps to enable Unicode in the AltiaHMI or AltiaHMI_3D
Altia project.

a. In Altia Design navigate to the Code Generation tab and click on CodeGen Options.

b. In the Code Generation Options dialog, click on the Override locked presets…
button. Click on Override.

c. Click the checkbox next to Unicode Font Characters to enable Unicode.

d. Click OK to close the Code Generation Options dialog.

e. Save the Altia project.

2. Click on the Build Prototype button to generate code and build the executable. The
resulting AltiaHMI.exe or AltiaHMI_3D.exe and the associated altiaWinLib.lib,
altiaAPIlib.lib, and altiaAPIlibfloat.lib object libraries are now all Unicode
versions.

3. Close Altia Design.

4. If your Stateflow model is configured to start the DeepScreen executable, copy the
DeepScreen executable from <Altia_project>\out to the Simulink project folder. For
example, for the AltiaHMI project, copy AlitaHMI\out\AltiaHMI.exe to AltiaHMI.exe
in the Simulink project folder.

March 17, 2022 Page | 47

Stateflow® Demonstration
Altia Connection for Simulink®

15.2 Configure Simulink Simulations for Unicode

1. Open the Simulink Configuration Parameters dialog with Ctrl+E.

2. Select Simulation Target in the left-side pane.

3. Select Additional build information: > Libraries.

4. Replace liblan.lib with liblanUnicode.lib.

5. Select Additional build information: > Defines.

6. Enter these two (2) defines:

UNICODE

ALTIAUNICODEAPI

7. Press OK to apply and close the dialog, or press Apply to apply the changes and keep the
dialog open.

8. For each Altia block in the Simulink model:

a. Right click on the Altia block and choose Block Parameters (S-Function).

b. In the S-function modules: field, replace liblan.lib with liblanUnicode.lib.

c. Press OK to close the Block Parameters dialog.

9. Save the Simulink project.

10. Go to the Simulink or Stateflow editor window, and Run a simulation as described in the
previous chapter Running a Demonstration Model in Simulation Mode.

For our Simulink/Stateflow model and Altia HMI, there will be no visual difference after
configuring for Unicode. However, the above changes made to the Simulation Target
rebuilt the Stateflow chart <model_file_name>_sfun.mexw64 for Unicode.

15.3 Configure Simulink Coder C Code Build and Run for
Unicode

1. Perform the previous Configure Simulink Simulations for Unicode steps if they have not
already been performed.

2. Perform a Simulink Coder C Code build and run. These earlier chapters describe how:

a. Transitioning to a C Code Build from Simulation Mode

b. Using Altia DeepScreen Generated Code with Simulation and C Code Build

March 17, 2022 Page | 48

Stateflow® Demonstration
Altia Connection for Simulink®

15.4 Configure Embedded Coder Build and Run for Unicode

1. Perform the previous Generate and Build DeepScreen Code for Unicode steps if they have
not already been performed.

2. If you have not already done so, follow the steps in the earlier chapter Transitioning to
Embedded Coder Deployable Code to learn how to build and run a Chart.exe.

3. Open the Simulink Configuration Parameters dialog with Ctrl+E.

4. Select Code Generation in the left-side pane.

5. Confirm the Target selection > System target file: is set to ert.tlc. If it is not, go back to
the earlier chapter Transitioning to Embedded Coder Deployable Code for instructions on
how to set it to ert.tlc.

6. Expand Code Generation in the left-side pane and select Custom Code.

7. Confirm the Use the same custom code settings as Simulation Target option is already
disabled. If it is enabled, you may not have completed all the steps in the earlier chapter
Transitioning to Embedded Coder Deployable Code.

8. Select Additional build information: > Defines.

9. Add these three (3) defines:

UNICODE

ALTIAUNICODEAPI

DEEPSCREEN

10. Press OK to apply and close the dialog, or press Apply to apply the changes and keep the
dialog open.

11. Return to the earlier chapter Transitioning to Embedded Coder Deployable Code for the
steps to build and run Chart.exe.

For our Altia HMI and Stateflow chart, there is no visual difference in the Chart.exe
execution with or without Unicode. However, the generation and build of the DeepScreen
code for Unicode and the additions to the Code Generation > Custom Code > Additional
build information: > Defines resulted in a Chart.exe that is now using Unicode strings
for the Altia HMI.

March 17, 2022 Page | 49

Stateflow® Demonstration
Altia Connection for Simulink®

 Stateflow Demonstration Summary
For this demo, we completed the following:

• Studied a Simulink model containing a Stateflow chart that uses the Altia API to control an
Altia HMI.

• Ran the Simulink/Stateflow model in Simulation mode. We interacted with the Altia HMI
running in the Altia Runtime executable.

• Used Simulink Coder for the Simulink/Stateflow model to generate and build a standalone
executable. We ran the standalone executable, and it interacted with the Altia HMI running
in the Altia Runtime executable.

• Generated Altia DeepScreen code for the Altia HMI and compiled it as its own executable.
In Simulation mode and from a Simulink Coder standalone executable, we interacted with
the Altia HMI running in the DeepScreen executable. We saw the behavior of the Altia HMI
in the DeepScreen executable was identical to the behavior in the Altia Runtime executable.

• Switched from Simulink Coder to Embedded Coder to build a single executable containing
the generated Stateflow C code and the generated DeepScreen C code. The C code in this
single executable is at the quality level of deployable embedded system code.

• Learned how to make the necessary changes to support Unicode strings in Simulation
mode, a Simulink Coder build and run, and an Embedded Coder build and run.

	1 Introduction
	2 MATLAB Installation Requirements
	3 Installing this Demonstration
	3.1 Altia Connection for Simulink
	3.2 ZIP file

	4 Overview of the Demonstration Model
	5 Files Included in the Demonstration Model
	6 Opening a Demonstration Model File for the First Time
	7 Running a Demonstration Model in Simulation Mode
	8 Configuring Stateflow for Use in a Simulink Model
	9 Getting Events from the Altia HMI Design into Stateflow
	10 Configuring Simulink Parameters for Simulation Execution with Altia
	11 Only Use Altia API Library Files from the Demonstration Folder
	12 Transitioning to a C Code Build from Simulation Mode
	13 Using Altia DeepScreen Generated Code with Simulation and C Code Build
	13.1 Generate and Build DeepScreen Windows Code for the Altia HMI
	13.2 Use the Altia API Server Code for DeepScreen Code in a Simulation or C Code Build
	13.3 Change the Stateflow Model to Start a DeepScreen Executable
	13.4 Run in Simulation Mode with a DeepScreen Executable
	13.5 Generate a C Code Build and Run Standalone with a DeepScreen Executable

	14 Transitioning to Embedded Coder Deployable Code
	14.1 Set Configuration Parameters for Embedded Coder
	14.2 Build This Subsystem

	15 Configuring Unicode Simulations and Code Builds
	15.1 Generate and Build DeepScreen Code for Unicode
	15.2 Configure Simulink Simulations for Unicode
	15.3 Configure Simulink Coder C Code Build and Run for Unicode
	15.4 Configure Embedded Coder Build and Run for Unicode

	16 Stateflow Demonstration Summary

